A Sampling of OPTIMISE Publications and Patents 1991 - 2017

B. Grimberg, R. Deissler, W. Condit, R. Brown, J. Jones, and R. Bihary, Magneto-Optical Diagnostic Devices and Methods, U.S. Patent # 9,575,052 B2, 2017

INVITED REVIEW PAPER: Baig, Tanvir; Amin, Abdullah; Deisser, Robert; Sabri, Laith; Poole, Charles; Brown, Robert; Tomsic, Mike; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Mike; Martens, Michael, "Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0 Tesla full body MRI systems", Superconductor Science and Technology, Volume 30(4), 043002 (2017).

C Poole, T Baig, RJ Deissler, M Martens, "Numerical analysis of the Coupling Loss Induced Quench protection for a 1.5 T whole body MgB2 MRI magnet", Accepted for Publication. Article reference: SUST-102390.R2 (2017).

RJ Deissler, T Baig, C Poole, A Amin, D Doll, M Tomsic, M Martens, “Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet”, Superconductor Science and Technology 30 (2), 025021 (2017).

Robert J. Deissler, Tanvir Baig, Charles Poole, Abdullah Amin, David Doll, Michael Tomsic, and Michael Martens, “A Computational Study to Find an Optimal RRR Value for a 1.5 T Persistent-Mode Conduction-Cooled MgB2 MRI Magnet from a Quench Protection Point of View”, IEEE Transactions on Applied Superconductivity, 27 (4), 4702206 (2017).

Abdullah Al Amin, Tanvir Baig, Robert J. Deissler, Zhen Yao, Michael Tomsic, David Doll, Ozan Akkus, Michael Martens “A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB2 superconducting wire”, Superconductor Science and Technology 29 (5), 055008 (2016).

C Poole, T Baig, RJ Deissler, D Doll, M Tomsic, M Martens, “Numerical study on the quench propagation in a 1.5 T MgB2 MRI magnet design with varied wire compositions”, Superconductor Science and Technology 29(4), 044003 (2016).

C Poole, T Baig, RJ Deissler, M Martens, “Quench Protection using CLIQ of a MgB2 0.5 T Persistent Mode Magnet”, IEEE Transactions on Applied Superconductivity, 27 (4), 4700605 (2016).

AA Amin, TN Baig, RJ Deissler, L Sabri, D Doll, M Tomsic, O Akkus, et al., “Mechanical Analysis of MgB2 Based Full Body MRI Coils Under Different Winding Conditions”, IEEE Transactions on Applied Superconductivity, 27(4), 4602205, (2016).

R. Brown, “Challenges in faculty entrepreneurship in the sciences: becoming an entrepreneur but staying at the university”, Ch. 3 in Embracing Entrepreneurship Across Disciplines, Ed. S. Nambisan, 31-50, Elgar Pub., Sept. 2015

RJ Deissler, M Martens, “Dependence of the Magnetization Response on the Driving Field Amplitude for Magnetic Particle Imaging and Spectroscopy” IEEE Transactions on Magnetics, 51 (2), 1-4 (2015).

N. Gudino, M. Sonmez, Z. Yao, T. Baig, S. Nielles-Vallespin, A. Z. Faranesh, R. J. Lederman, M. Martens, R. S. Balaban, M. S. Hansen and M. A. Griswold, “Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating”, Med. Phys. 42, 359 (2015).

Tanvir Baig, Zhen Yao, David Doll, Mike Tomsic, Michael Martens, “Conduction cooled magnet design for 1.5T, 3.0T and 7.0T MRI systems”, Superconductor Science and Technology, in press (2015).

Robert J. Deissler, Yong Wu, and Michael A. Martens, “Dependence of Brownian and Neel Relaxation Times on Magnetic Field Strength”, Medical Physics, 41, 012301 (2014).

R. W. Brown, Y.-C. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, 2nd Edition: Magnetic Resonance Imaging: Physical Principles and Sequence Design. , 944 pp., John Wiley & Sons, Hoboken, NJ 2014.

M. A. Martens, R. J. Deissler, Y. Wu, L. Bauer, Z. Yao, R. Brown, and M. Griswold, Modeling the Brownian relaxation of nanoparticle ferrofluids: Comparison with experiment, Med. Phys. 40, 022303, 2013.

Z. Yao, Y. Wu, T. Chmielewski, S. Shvartsman, M. Martens, T. Eagan, R. Brown, Simulation Guidelines for Incision Patterns on RF Shields, Concepts in Mag. Resonance Part B, 41B(2), 37–49, 2012.

X. Shou, X. Chen, J. Derakhshan, T. Eagan, T. Baig, Sh. Shvartsman, J. Duerk, R. Brown, The suppression of selected acoustic frequencies in MRI, Applied Acoustics Vol. 71, 191-200, 2010.

B. Yao, J. Z. Liu, R. W. Brown, V. Sahgal and G. H. Yue, Nonlinear features of surface EEG showing systematic brain signal adaptations with muscle force and fatigue, Brain Research, Vol. 1272, 89-98, 2009.

X. Chen, V. Taracila, T. Eagan, H. Fujita, X. Shou, T. Baig, and R. Brown, An antenna-theory method for modeling high- frequency RF coils: a segmented birdcage example, Intern. J. of Antennas and Prop., Vol. 2008, Article ID 456019, 2008.

D. E. Farrell, C. J. Allen, M. W. Whilden, T. K. Kidane, T. N. Baig, J. H. Tripp, R.W Brown, S. Sheth and G.M. Brittenham, A new instrument designed to measure the magnetic susceptibility of human liver tissue in vivo. IEEE Trans. Magnetics, 43, 9 (1): 3543-3554, 2007.

T. N. Baig, T. P. Eagan, L. S. Petropoulos, T. K. Kidane, W. A. Edelstein, and R. W. Brown, Gradient coil with active endcap shielding, Concepts in Magnetic Resonance Part B, 31B(1), 12-23, 2007.

T. K. Kidane, W. A. Edelstein, T. P. Eagan, V. Taracila, T. N. Baig, Y.-C.N. Cheng and R. W. Brown, Active-Passive Shielding for MRI Acoustic Noise Reduction: Network Analysis, IEEE Trans. Magn., 42:3854 - 3860, 2006.

V. Taracila, T. Eagan, L. Petropoulos and R. Brown, Image uniformity improvement for birdcage-like volume coils at 400MHz using multichannel excitations. Concepts in Magnetic Resonance Part B, 29B(3), 153-160, 2006.

J.D. Willig-Onwuachi, T. P. Eagan, Sh. M. Shvartsman, and R. W. Brown. Designer RF field profiles for parallel imaging applications. Concepts in Magnetic Resonance Part B, 27B(1), 75-85, 2005.

T. P. Eagan, Y.-C. Cheng, T. K. Kidane, H. Mathur, T. Chmielewski, J. Flock, Sh. M. Shvartsman, and R. W. Brown. A

group theory approach to RF coil design. Concepts in Magnetic Resonance Part B, 25B(1), 42-52, 2005.

V. Taracila, W. A. Edelstein, T. K. Kidane, T. P. Eagan, T. N. Baig, and R. W. Brown. Analytical calculation of cylindrical shell modes: implications for MRI acoustic noise. Concepts in Magnetic Resonance Part B, 25B(1), 60-64, 2005.

J. Z. Liu, Q. Yang, B. Yao, R. W. Brown, and G. H. Yue: Linear correlation between fractal dimension of EEG signal and handgrip force. Biological Cybernetics, 93:131-140, 2005.

W. A. Edelstein, T. K. Kidane, V. Taracila, T. N. Baig, T. P. Eagan, Y.-C. N. Cheng, R. W. Brown, J. A. Mallick. Active- Passive Gradient Shielding for MRI Acoustic Noise Reduction. Magnetic Resonance in Medicine 53:1013-1017, 2005.

J. D. Willig-Onwuachi, R. W. Brown, and Sh. M. Shvartsman, Birdcage coils for simultaneous acquisition of spatial harmonics, U.S. Patent #6,791,321, 2004.

J.-Z. Liu, L.-D. Zhang, R. W. Brown, G.-H. Yue, Reproducibility of fMRI results at 1.5 T in a strictly controlled motor task, Magnetic Resonance in Medicine, vol. 52, pp. 751-760, 2004.

Y.-C. N. Cheng, R. W. Brown, M. R. Thompson, T. P. Eagan, and Sh. M. Shvartsman, A comparison of two design methods for MRI magnets, IEEE Transactions on Applied Superconductivity, vol. 14, no. 3, pp. 1908-1914, 2004.

J.-Z. Liu, Z.-Y. Shan, L.-D. Zhang, V. Sahgal, R. W. Brown, G.-H. Yue, "Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an fMRI study,"Journal of Neurophysiology 90: 300 - 312, 2003.

Y.-C. N. Cheng, T. P. Eagan, T. Chmielewski, J. Flock, M.-C. Kang, T. K. Kidane, Sh. M. Shvartsman, and R. W. Brown, A degeneracy study in the circulant and bordered-circulant approach to birdcage and planar coils, Magnetic Resonance Materials in Biology, Physics, and Medicine, vol. 16, No. 2, pp. 103-111, 2003.

J.-Z. Liu, R. W. Brown, and G.-H. Yue, A dynamical model of muscle activation, fatigue, and recovery, Biophysical J., vol. 82 No. 5, pp. 2344-2359, 2002.

R. W. Brown, Y.-C.N. Cheng, W. C. Condit, and D. E. Schuele, Detection of wear particles and other impurities in industrial fluids, U.S. Patent #6,255,954, 2001.

Sh. M. Shvartsman, R. W. Brown, H. Fujita, M. A. Morich and L. S. Petropoulos, Supershielding of finite length structures in open magnetic and electric systems, U.S. Patent #6,236,203, 2001.

T.-H. Dai, J.-Z. Liu, V. Sahgal, R. W. Brown, and G.-H. Yue, Relationship between muscle output and functional MRI- measured brain activation, Exper. Brain Research, vol.140, pp. 290-300, 2001.

Sh. M. Shvartsman, R. W. Brown, Y.-C. N. Cheng, T.P. Eagan, H. Fujita, M. A. Morich, L. S. Petropoulos, and J.D. Willig, Application of the SUSHI Method to the Design of Gradient Coils, Mag. Res. Med., vol. 45, pp. 147-155, 2001.

S. M. Shvartsman, R. W. Brown, Y.-C. N. Cheng, T. P. Eagan, and J. D. Willig, Supershielding: trapping of magnetic fields, IEEE Transactions on Magnetics, vol. 37, No. 5, pp. 3116 -3119, 2001.

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Textbook: Magnetic Resonance Imaging: Physical Principles and Sequence Design, 914 pp., John Wiley & Sons, New York, NY 1999.

R. Brown and Sh. Shvartsman, Supershielding: Confinement of Magnetic Fields, Phys. Rev. Lett., vol.83. No. 10, pp. 1946-1949, 1999.

Y.-C. Cheng, R.W. Brown, Y.-C. Chung, J.L. Duerk, H. Fujita, J.S. Lewin, D.E. Schuele, and Sh. Shvartsman, Calculated RF Electric Field and Temperature Distributions in RF Thermal Ablation: Comparison with Gel Experiments and Liver Imaging, JMRI, vol. 8 No. 1, p. 70, 1998.

M. A. Morich, L. S. Petropoulos, H. Fujita, Sh. Shvartsman, and R. W. Brown, Technique for designing distributed radio frequency coils and distributed radio frequency coils designed thereby, U.S. Patent #5,689,189, 1997.

M. R. Thompson, R. W. Brown, and V. C. Srivastava, An inverse approach to the design of MRI main magnets, IEEE Trans. Mag., vol. 30 No. 1, pp. 108-112, 1994.

M. A. Martens, L. S. Petropoulos, R. W. Brown, J. A. Andrews, M. A. Morich, and J. L. Patrick, Insertable biplanar gradient coil for MR imaging, Rev. Sci. Inst., vol. 62 No. 11, p 2639, 1991.

More than 100 years ago, scientists at what is now Case Western Reserve University in Cleveland, Ohio gave the nation pride in the beginnings of medical imaging. The X-ray discoveries in 1895 by Roentgen in Germany were in the same year replicated in CWRU’s physics department by Professor Dayton Miller and thus began a long and rich history of imaging physics at the university. Ohio’s industry also had a pioneering start in the manufacturing of imaging equipment more than 80 years ago, when Picker X-Ray moved to Cleveland. Picker and other Ohio companies expanded their product development to magnetic resonance imaging (MRI), another medical revolution with CWRU roots. Last but not least, Paul Lauterbur earned an undergraduate degree at CWRU and shared the 2003 Nobel Prize in Medicine for his independent discovery of MRI.